If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+72x+24=0
a = 6; b = 72; c = +24;
Δ = b2-4ac
Δ = 722-4·6·24
Δ = 4608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4608}=\sqrt{2304*2}=\sqrt{2304}*\sqrt{2}=48\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-48\sqrt{2}}{2*6}=\frac{-72-48\sqrt{2}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+48\sqrt{2}}{2*6}=\frac{-72+48\sqrt{2}}{12} $
| 2x÷3+5÷6=13÷6 | | 4x-10=7x-2 | | 4y-3/4-3=5y-7/3-4y-1 | | 7-7-2p=3 | | -(1/2)=-(4/7x)-(2/3) | | 13x-1=6x+12 | | -8x^2-8x+48=0 | | 1/4d=1 | | 20p/3=40+p | | 2x²+3x-90=0 | | 9j+4=4j+4 | | 10(x-1)=2(4x+3) | | 75,90/100=x/80 | | P^2-2p-100=0 | | Y-(-5)=(2/9)(x-8) | | 3+4(5-x)= | | Y=7/8x-2/3 | | 10-2(3x+1)= | | 3+x-(-2-x)= | | 13t-28=16+-7 | | 5(2+x)+2(x-3)= | | x-1-(1-x)= | | 2-3x-4(5x-6)= | | 3y+4-2=5 | | 3x-12+x-3=2x+4 | | 3x-12+x-3=2+4 | | p×5=15=p | | a=1/2(8*8)(12.07) | | 10k+3=k+27 | | 7a-6=27 | | 0.07(6-x)+0.1x=0.09 | | 15+9(-9-1)=-10(11x+14) |